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Abstract - Radiotelescope access to a certain part of
the sky requires very low tracking rate in azimuth.
At low rates, the magnitude of the dry rolling
friction torques at the telescope wheels cause a non-
smooth azimuth motion and the limit cycling of a
telescope, which, in turn, deteriorates its pointing
precision. The improvement of the low-rate tracking
pointing through the dither implementation is
discussed in this paper.

Dither is a high-frequency external signal
injected into a system, with frequency much higher
than the system dynamics. It has long been known
that the injection of high-frequency signals into
nonlinear electrical circuits drastically reduces the
system limit cycles. We have recently identified a
similar phenomenon in the limit cycling behavior of
large wheel-and track radiotelescopes and
microwave antennas. The high frequency signal
excites local vibrations that overcome the friction-
stiction torque between the wheels and the track.
The vibrations, however, do not propagate through
the telescope structure - thus not impacting its
pointing performance. We showed through non-
linear simulations that the limit cycle amplitude of
the National Radio Astronomy observatory’s 100-
rneter radiotelescope was dramatically reduced
when dither was applied, and that its pointing
accuracy at low rates was significantly improved.
The implementation of the dither to the
radiotelescope  control system is comparatively
simple as it requires rather trivial modifications of
the controller software and hardware. Therefore
dither is a reasonable control design option for
tracking improvement at low rates.
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Aeronautics and Astronautics. All rights reserved.

I. Introduction

Many radiotelescopes cannot precisely point at a
certain part of the sky that requires tracking with very
low azimuth angular rates (approximately lower than
0.4 mdeg/s).  This part is about 5’70 of the sky. On the
other hand, microwave antennas in certain tasks, such
as stability measurements, are required to point at a
gee-synchronous satellite. The satellite, however, is not
completely stationary, it has slow movements of 0.06
mdeg/s.  For such slow rates, dry rolling friction is
observed at the antenna drives that cause an unwanted
increase of pointing error.

In this paper we analyze the National Radio
Astronomy Observatory’s Green Bank Telescope
located in West Virginia. It is one of the two worlds
largest articulated radiotelescopes (its 10O-meter-
diameter main reflector is of the same size as the
reflector of the Effelsberg  radiotelescope in Germany).
The Green Bank Telescope has a unique configuration
characterized by the off-set reflector (see Fig. 1 ). The
telescope’s size and weight create difficulties in
precision tracking. One of them is observed during
tracking at low rates. It was shown in Ref.[ 1 ] that for
rates lower than 0.3 mdeg/sec a non-smooth telescope
motion with breakaway may occur. The peak-to-peak
tracking error due to friction is 1.4 mdeg.

A high-frequency external signal injected into a
system (its frequency much higher than the system
dynamics) is called a dither [2,3]. It has long been
known that injection of high-frequency signals into a
nonlinear system results in eliminating the system limit
cycles [2,3,4,5]. This phenomenon was detected in
electrical circuits by Appleton in 1922. In this report we
will show that the implementation of the dither will
improve the telescope pointing at low tracking rates.
High frequency dither signal excites local telescope
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vibrations only (at the wheels), thus breaking the
friction-stiction phenomena. The vibrations are not
transmitted through the telescope structure - thus not
impacting its pointing performance.

II. Dry Friction Model

The telescope’s non-linear dynamics, at low rates,
is caused by the dry friction phenomenon. Friction is a
torque, or a force, that depends on the relative velocity
of the moving surfaces. In the Coulomb friction model
it is constant after the motion begins, and this constant
is called the Coulomb friction torque. At zero speed,
the friction torque is equal and opposite to the applied
torque, unless the latter one is larger than the stiction
torque. In this case, the friction torque is equal to the
stiction torque. The stiction torque is a torque at the
moment of breakaway and is larger than the Coulomb
torque. A diagram of the friction torque versus relative
velocity is shown in Fig.2.

Many friction models have been developed, see
for example Refs.[2,6,7,8,9,10]. They reflect different
aspects of the friction phenomena and their usefulness
depends on application purposes. The model presented
below combines basic physical properties of the dry
friction with the numerical features that improve digital
simulations. It is the most often utilized in the antenna
industry since its accuracy for the antenna tracking
purposes has been tested at many existing telescopes
and antennas. In this model, denote v the telescope
wheel velocity, and v, >0, a wheel velocity threshold

which is a small positive number. Denote ~C the

Coulomb friction torque, and T, the stiction torque,
then the friction torque model, T, is defined as follows:

{

– T= sign(v) for [vI > v,
T’= (la)

— min(lTJl, T, )sign(T~  ) for Iv[s  V,

where

[

1 for v>O

sign(v) = O f o r  v = O (lb)

- 1 f o r  v<O

and T~ denotes the total applied torque. In this model,

if the surfaces in a contact develop a measurable
relative velocity, such that \vl > v,, the friction torque
is constant, directed opposite to the relative speed. If

the relative velocity is small, namely, within the

threshold, ( I VI S v,) the torque does not exceed neither
the stiction torque nor the applied torque and is directed
opposite to the applied torque. The velocity threshold
V, is implemented for numerical purposes: numerically

the zero state does not exist, therefore the threshold
represents the numerical zero.

It follows from Eq.(la)  that in order to determine
the friction torque Tone has to know:
● the Coulomb friction torque T,,
● the stiction (breakaway) torque ~$,

● the applied torque ~j,
● the wheel rate v,
● the wheel rate threshold v, .

Each variable is determined as follows.

The Coulomb friction torque is proportional to force F
which is normal to the surface

1; = /YF (2)

where r is the wheel radius and P is the friction
coefficient. For hard steel ,u=O. 0012-0.002.

The stiction (breakanqy) torque T. is  most often
assumed to be 20 to 30°/0 higher than the Coulomb
friction, that is

T, = aTC, where a = 1.2 – 1.3 (3)

The total applied torque T~ is determined  from the
plant dynamics as follows. Let the discrete state-space
equation of the plant (which includes the telescope
structure and its drives) be

x(i + 1)= AJx(i) + B&r(i)  + BJ, T(i), (4a)

v(i+l)=CJx(i+l) (4b)

In this model, At denotes sampling time, i denotes the
ith sample, v(i) is the wheel  rate at time instant i At,
x(i) is the plant state at the instant i At, r(O is the
telescope angular input rate, and T(i) is the friction
azimuth torque. Additionally, Ad is the telescope

discrete-time state matrix, B,, and B& are telescope

rate and friction torque input matrices, and cd is the
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wheel rate output matrix. Left-multiplying Eq.(4a) by
Cd gives

V(2+. 1)= Cdx(i+ 1)=

C’d Adx(i) + Cd B&r(i)  + Cd B., l“(i) (5)

According to the friction model, for the wheel rate
being within the threshold, i.e. such that lv(i + I)] < v,,

one obtains v(i  + 1) = O, thus from E,q.(5) one obtains

T(i)=-&- (4x(O+ ~dr~(i)),
d C//

(6)

and the applied torque T~ is opposite to the friction
torque T

~c’–(AdX(O+  Bdrr(i)),7d(i)=—

d df

(7)

The wheel rate threshold V, was assumed 0.67 mdegfs.

III. Explaining Dither Action
Linearized Model

There are many ways to reduce

Using

the system
dynamics due to friction. Most of them are based on
closed-loop compensation [2,3,1 1,12,1 3]. Here, we
apply an open-loop technique by dithering the driving
torque. The block diagram of the rate-loop system with
the dry friction and the rate dither is shown in Fig.3. in
this diagram, according to Eq.(1 ), the dry friction
torque T is a nonlinear function of the azimuth wheel

rate v and the drive torque Td.

In order to describe the dither action we need to
consider the torque at the azimuth wheel. For low rates,
the driving torque Td is smaller than the dry friction

torque T=, causing the telescope to stop. While resting,

the error between the commanded position and the
actual telescope position increases. In the closed-loop
configuration increased error causes to increase the
driving torque T d , and eventually the movement of

the telescope is observed. The cycle repeats itself and is
called limit cycling. The plots of the telescope cross-
elevation pointing, pinion torque, pinion angle and rate
in this limit cycling are shown in Figs.4a,b and 5a,b,
respectively.

A harmonic dither of amplitude dO and period /0

d(t)= do sin%
o

(8)

is introduced at the telescope rate input. When dither is
implemented the torque level at the wheel is raised. But
the increase is not a constant one: it varies harmonically
(see Fig.6a,b).  If the amplitude of the driving torque

Td exceeds the friction torque, the telescope is moving
continuously and the limit cycling is overcome. Due to
the high dither frequency, (high, when compared to the
telescope dynamics) the harmonic movement is a local
phenomenon at the wheels. It is not propagated through
the telescope structure, having very low impact on the
structural dynamics, and consequently on the telescope
pointing.

The above heuristic explanation of the dither
action can be derived more formally. Consider the
continuous-time telescope moclel with the nonlinear
friction torque T(v), driven by the command rate, r,
and dither, d

,i=Ax+Br(r  +d)+B, T(v),
V=ex (9)

The parameters  (A,  B, ,  B,, C) are the of  the

continuous-time counterparts of the discrete-time
parameters (Ad, B&, BdJ, Cd ) as in Eq.(4), and x(O is

the continuous-time state variable of the plant. This

equation is averaged over the dither period fO. The

average value x(, ofx is defined as

(+1”

Xa(f)=  : Ix(r)dr.
0 ,

(lo)

Next, note that in Eq.(9) the average value of the rate
command is almost the same as the instantaneous value,
since the command changes insignificantly over the

period to, i.e., r(t) z r(~ + to). The average value

~(v)of the nonlinear torque 7(v) is obtained from the
dry friction torque as in Eq.(1). The velocity threshold
v, in this equation is assumed zero (the non-zero

threshold was previously introduced to avoid numerical
difficulties in simulations). Thus, the wheel friction
torque is given as

T = -T,sigtl(v + d) (11)
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The average torque T is called the smooth image of
.

the dry friction torque. The smooth image T is defined
.

f

+10
asT=~ T dr, therefore one obtains.

1+1

()-L’~Tcsigtr(v+d)cf.  =-~a~.sirl  : (12)
to , ?r dO

,.
The plot of T with respect to ~ for Tc = 1 is shown

in Fig.7. One can see from this figure that although the
dry friction T is a discontinuous function of the rate, its

.
smooth image T is, by definition, a smooth function of
the rate. it also follows from Fig.7 that the smooth
image exists only for the dither amplitudes that extend
the wheel rate, i.e., for do > v. This is quite
understandable since for the dither amplitude smaller
than the wheel rate there is no change in the friction
torque (see Eq.(1  l)).

A

Since the function T is smooth it can be
linearized for small rate variations. That is, for small
wheel rate v that is proportional to the rate of the

command r, v = krr, one obtains

df 2T=

dv ‘-d.,.0

or

2Tck,
kO =--—

ndO

(13)

(14)

The plot of linearized ~ in Fig.7, shown as a dashed

line, reveals a good coincidence with ~ for v < 0.5do.

Introducing Eq.(14)  to the averaged Eq.(9) one
obtains the following linear system

X. = Axa + Bmr+B, d, y. =Cxo (15a)

with the input matrix B,O in the form

Bw = B, + kOB. (15b)

4

The above equation proves that the system dynamics
with dry friction and dither is linear one. Also, notice
that the dither input has no significant impact at the
telescope pointing. Let us write the pointing ~d as a

superposition of the pointing (-VW) due to the input r
and the pointing (ya,  ) due to the dither input d, i.e.,

Y. = yar + yad. Notice that the dither is of high

frequency, therefore the response y.d is negligible

when compared to yti, thus ya z Ya,. The latter

shows, that the dither action makes the telescope
dynamics linear, but it does not show itself at the
output, thus the telescope pointing performance is not
affected.

IV. Nonlinear Simulation Results

Typically, the dither signal should be injected just
ahead of the nonlinearity. In the case of the Green Bank
Telescope it is a rate command at the telescope azimuth
drives. In this case the dither is simply added to the
feed-forward command generated by the controller
computer.

The dither amplitude and frequency are
determined as follows. The frequency must be much
higher than the telescope dynamics. Since no
significant telescope dynamics is observed above 10
Hz, the dither frequency 30 IIz ( o{) = 1885rd  / s) is

chosen. The dither amplitude depends on the level of
friction torque. Dry friction torque for tracking at a rate
of 0.3 mdeg/s  is shown in Fig.4b and is smaller than
5642 N-m (50,000 lb-in). For this friction level the
dither amplitude was determined to be 0.18 degk. The
selection process included the telescope pointing
simulations with various dither amplitudes. The plot of
dither amplitude versus cross-elevation pointing is
shown in Fig.8. It follows from this figure that the
cross-elevation error is the smallest for an amplitude of
0.18 degk. The plot of the cross-elevation pointing and
the pinion angle for the above dither amplitude are
shown in Fig.9a,b. The plots show the smooth pinion
angle profile and small pointing error. Additionally,
Fig. 10 shows the elevation and cross-elevation errors
for the telescope with and without the dither for a time
segment of [35, 40] s, when the telescope motion is
already stationary. The maximum elevation error
dropped 14 fold, from 0.19 to 0.014 mdeg, and the
maximum cross-elevation error dropped 18 fold, from
1.4 to 0.08 rndeg.
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Figure 1. National Radio Astronomy Observatory Green Bank radiotelescope
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Figure 2. Friction torque versus rate.
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Figure 3. Azimuth control system with dry friction and dither.
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